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1. THE LAPLACE EQUATION

Let Ω ⊂ RN be a body made of some uniform material; on the boundary of
Ω, we prescribe some fixed temperature f . Consider the following

Question. What is the equilibrium temperature inside Ω?

Date: August 29, 2008.
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Mathematically, if u denotes the temperature in Ω, then we want to solve the
equation

(1.1)
{ ∆u = 0 in Ω,

u = f on ∂Ω.

We shall always assume that f : ∂Ω → R is a given smooth function and
Ω ⊂ RN , N ≥ 3, is a smooth, bounded, connected open set. We say that u is a
classical solution of (1.1) if u ∈ C2(Ω) and u satisfies (1.1) at every point of Ω.

This problem was studied by some of the greatest mathematicians of the
19th century: Fourier, Green, Dirichlet, Lord Kelvin, Riemann, Weierstrass, Schwarz,
Neumann, Poincaré,... We shall devote ourselves to the variational approach
called the Dirichlet Principle.

1.1. The Dirichlet Principle. The Dirichlet Principle consists in replacing prob-
lem (1.1) by the following minimization problem:

(1.2) I = inf
{∫

Ω

|∇v|2 : v ∈ C2(Ω) such that v = f on ∂Ω
}

.

Any function v ∈ C2(Ω) such that v = f on ∂Ω is called an admissible function.

We first note that problems (1.1) and (1.2) are equivalent by Theorem 1.1
below. We then say that ∆u = 0 is the Euler-Lagrange equation associated to the
functional

J(v) =
∫

Ω

|∇v|2.

Theorem 1.1 (Riemann). u solves (1.1) if and only if u minimizes (1.2).

Proof. (⇒) Let u be a solution of (1.1). Given any admissible function v, we have
to show that

(1.3)
∫

Ω

|∇u|2 ≤
∫

Ω

|∇v|2.

Note that u = v on ∂Ω, thus an integration by parts gives

(1.4)
∫

Ω

∇u · ∇(v − u) = −
∫

Ω

div (∇u) (v − u) = −
∫

Ω

∆u (v − u) = 0.

We deduce that∫
Ω

|∇v|2 =
∫

Ω

∣∣∇(
u + (v − u)

)∣∣2
=

∫
Ω

|∇u|2 + 2
∫

Ω

∇u · ∇(v − u) +
∫

Ω

∣∣∇(v − u)
∣∣2

(by (1.4)) =
∫

Ω

|∇u|2 +
∫

Ω

∣∣∇(v − u)
∣∣2

≥
∫

Ω

|∇u|2.
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This is precisely (1.3).

(⇒) Assume u minimizes the Dirichlet integral. We want to show that ∆u = 0 in
Ω. Given ϕ ∈ C∞

0 (Ω) (i.e., ϕ is a smooth function with compact support in Ω), let

F (t) =
∫

Ω

∣∣∇(u + tϕ)
∣∣2 − ∫

Ω

|∇u|2 ∀t ∈ R.

Since u is a minimizer, we have F ≥ 0 and F (0) = 0. Thus, F ′(0) = 0. On the
other hand,

F ′(t) = 2
∫

Ω

∇u · ∇ϕ + 2t

∫
Ω

|∇ϕ|2.

We conclude that

0 = F ′(0) = 2
∫

Ω

∇u · ∇ϕ = −2
∫

Ω

∆u ϕ.

Since ϕ is arbitrary, we have ∆u = 0 in Ω. �

The Dirichlet Principle was used in the 19th century in order to assure exis-
tence of solutions of (1.1) via the minimization problem (1.2). At that time, how-
ever, the existence of a solution of (1.2) was taken for granted. But in 1870 Weier-
strass came out with the following example in dimension N = 1:

(1.5) Ĩ = inf
{∫ 1

−1

(
xv′(x)

)2
dx : v ∈ C2[−1, 1], v(−1) = −1 and v(1) = 1

}
.

Proposition 1.1 (Weierstrass). Problem (1.5) has no solution.

Proof. We first show that Ĩ = 0. Clearly, Ĩ ≥ 0. It remains to show that Ĩ ≤ 0.
Indeed, let

vn(x) =
arctannx

arctann
∀x ∈ [−1, 1].

An easy computation shows that∫ 1

−1

(
xv′n(x)

)2
dx → 0 as n →∞.

Thus, Ĩ = 0 as claimed. In order to establish the proposition, assume by contra-
diction that (1.5) has a solution u. Since Ĩ = 0, this implies

u′(x) = 0 ∀x ∈ (−1, 1) \ {0}.

By the continuity of u′, we deduce that u′ ≡ 0. Thus, u is constant. Since, by
assumption, u(−1) = −1 and u(1) = 1, we have a contradiction. �

After Weierstrass’ example, the Dirichlet Principle was regarded as a his-
torical curiosity. Several mathematicians, notably Poincaré, eventually solved
problem (1.1) using other methods: integral equations, conformal representation,
balayage, etc. By the end of the 19th century, Hilbert would enter in the scene...
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1.2. The dawn of the Direct Methods. In 1897, Hilbert tried to re-establish the
Dirichlet Principle in rigorous terms. The task was to find a solution of the min-
imization problem (1.2), without making use of (1.1). We could summarize his
idea as follows.

Let (vn) be a sequence of admissible functions such that∫
Ω

|∇vn|2 → I;

(vn) is called a minimizing sequence. One should try to construct out of (vn) a
new minimizing sequence (wn) such that

wn → u,

the convergence taking place in some suitable sense. Then, u should be a solution
of (1.2).

In the beginning, Hilbert’s idea turned out to be quite difficult to implement.
His argument in [5] was sketchy; immediately after, he came out with a rigorous
proof, but it was quite long (see [6]). The reason is that he was trying to minimize
the Dirichlet integral ∫

Ω

|∇v|2

in the wrong space, namely C2(Ω). Actually, Hilbert did not realize that. Never-
theless, his words were somewhat prophetical: “Every problem in the Calculus of
Variations has a solution, provided the word ‘solution’ is suitably understood”.

1.3. The modern formulation of the Calculus of Variations. The modern theory
of the Calculus of Variations is based on the following strategy:
Step 1 Enlarge the set of admissible functions, where it is easier to find a solution

(existence step);
Step 2 Show that the solution found in Step 1 actually belongs to the initial set;

thus it is a solution of the original minimization problem (regularity step).
We shall illustrate how to implement Steps 1 and 2 in the study of (1.2).

1.4. The space H1
0 (Ω). In this section we introduce the underlying space where

Step 1 will be performed. Let

H1(Ω) =

v ∈ L2(Ω)

∣∣∣∣∣∣∣∣∣
for every i = 1, . . . , N

there exist wi ∈ L2(Ω) such that∫
Ω

v
∂ϕ

∂xi
= −

∫
Ω

wiϕ, ∀ϕ ∈ C∞
0 (Ω)


We recall that C∞

0 (Ω) denotes the set of smooth functions with compact support
in Ω.

The functions wi, whenever exist, are uniquely determined a.e. (see Exer-
cise 1.1); these functions wi are called weak derivatives of v; they will be denoted



TOPICS ON CALCULUS OF VARIATIONS 5

by ∂v
∂xi

. For instance, if u ∈ C1(Ω), then u ∈ H1(Ω) (in which case the weak and
classical derivatives coincide), but the converse is false (see Exercise 1.4).

The space H1(Ω), equipped with the norm

‖v‖H1 := ‖v‖L2 +
n∑

i=1

∥∥∥∥ ∂v

∂xi

∥∥∥∥
L2

,

is a Hilbert space (see Exercise 1.3). We denote by 〈 , 〉H1 the inner product asso-
ciated with this norm.

Exercise 1.1.
(1) Prove the Fundamental Theorem of the Calculus of Variations:

Let v ∈ L1(Ω) be such that

(1.6)
∫

Ω

vϕ = 0 ∀ϕ ∈ C∞
0 (Ω),

then v = 0 a.e.
Hint: First show that (1.6) holds for every ϕ ∈ L∞(Ω); then take ϕ = sign u.

(2) Deduce that if u ∈ H1(Ω), then the weak derivatives of u are well-defined
a.e.

Exercise 1.2. Let (vn)n≥1 be a sequence in H1(Ω) such that

vn → v in L2(Ω) and
∂vn

∂xi
→ wi in L2(Ω) ∀i = 1, . . . , N.

Show that v ∈ H1(Ω) and ∂v
∂xi

= wi for every i.

Exercise 1.3. Prove that H1(Ω) is a Hilbert space.

Exercise 1.4. Let Ω := B1/2 be the ball of radius 1/2 centered at 0, and

v(x) := log log
1
|x|

∀x ∈ Ω.

Show that v ∈ H1(Ω); in particular, H1(Ω) 6⊂ C(Ω).

In view of Exercise 1.4, functions in H1(Ω) need not be continuous. How-
ever, every element in H1(Ω) can be approached by C∞-functions. This fact is
fundamental in the study of properties of H1(Ω):

Theorem 1.2. C∞(Ω) is dense in H1(Ω).

By definition, H1(Ω) is a vector subspace of L2(Ω). Surprisingly, functions
in H1 have some better integrability:

Theorem 1.3 (Sobolev). H1(Ω) ⊂ L
2N

N−2 (Ω) and we have

‖v‖
L

2N
N−2

≤ C‖v‖H1 ∀v ∈ H1(Ω),

for some constant C > 0 independent of v.



6 AUGUSTO C. PONCE

Since H1(Ω) is an infinite dimensional vector space, closed bounded subsets
of H1 need not be compact with respect to the metric induced by the H1-norm
(Riesz’s theorem). However,

Theorem 1.4 (Rellich-Kondrachov). If K is a bounded closed subset of H1(Ω), then
K is compact in Lp(Ω), for every 1 ≤ p < 2N

N−2 .

Exercise 1.5. For any smooth function ϕ ∈ C∞
0 (B1), consider the sequence (ϕn)

given by ϕn(x) = n
N−2

2 ϕ(nx), ∀x ∈ B1.
(1) Show that∫

B1

|ϕn|
2N

N−2 =
∫

B1

|ϕ|
2N

N−2 and
∫

B1

|∇ϕn|2 =
∫

B1

|∇ϕ|2 ∀n ≥ 1.

(2) Deduce that Theorem 1.4 above fails in the critical case of the Sobolev
imbedding, namely p = 2N

N−2 .

We now introduce the following

Definition 1.1. Given a sequence of functions (vn) ⊂ H1(Ω), we say that (vn) con-
verges weakly to v if

〈vn, w〉H1 → 〈v, w〉H1 ∀w ∈ H1(Ω).

This will be denoted by
vn ⇀ v weakly in H1(Ω).

Clearly, if vn → v strongly in H1(Ω) (i.e., ‖vn − v‖H1 → 0), then vn ⇀ v
weakly, but the converse is false (see Exercise 1.6). The weak convergence in-
duces a topology in H1(Ω) which has less open and closed sets than the topology
induced by the H1-norm. For instance, the sphere

(1.7) S =
{

v ∈ H1(Ω) : ‖v‖H1 = 1
}

is not closed with respect to the weak topology (see Exercise 1.6). However, the
following holds:

Proposition 1.2. Let F ⊂ H1(Ω) be a vector space. Assume that F is closed with
respect to the H1-norm. Then, F is closed with respect to weak convergence. In other
words, if (vn) ⊂ F and vn ⇀ v weakly in H1(Ω), then v ∈ F .

Proof. By contradiction, assume there exists a sequence (vn) ⊂ F such that vn ⇀ v
weakly in H1(Ω) but v 6∈ F . Since F is closed, by the Hahn-Banach Theorem there
exists a continuous linear functional f : H1(Ω) → R such that

f(v) = 1 and f(w) = 0 ∀w ∈ F.

By the Riesz Representation Theorem, there exists u0 ∈ H1(Ω) such that

f(z) = 〈u0, z〉H1 ∀z ∈ H1(Ω).

In particular,

0 = f(vn) = 〈u0, vn〉H1 → 〈u0, v〉H1 = f(v) = 1.
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This is a contradiction. Thus, F is closed under weak convergence. �

Here are some other properties satisfied by the weak convergence:

Theorem 1.5. Let (vn) be a sequence in H1(Ω).
(i) If vn ⇀ v weakly in H1(Ω), then (vn) is bounded in H1(Ω) and we have

‖∇v‖L2 ≤ lim inf
n→∞

‖∇vn‖L2 .

(ii) If (vn) is bounded in H1(Ω), then we can extract a subsequence (vnk
) such that

vnk
⇀ v weakly in H1(Ω)

for some v ∈ H1(Ω).

Combining Theorems 1.4 and 1.5, one deduces the following

Corollary 1.1. Let (vn) be a bounded sequence in H1(Ω). Then, we can extract a subse-
quence (vnk

) such that

vnk
⇀ v weakly in H1(Ω),

vnk
→ v strongly in Lp(Ω), for every p ∈

[
1, 2N

N−2

)
,

vnk
→ v a.e.

Exercise 1.6. Let (ϕn) be the sequence given in Exercise 1.5. Show that ϕn ⇀ 0
weakly in H1(Ω).

Consider the following vector subspace of H1(Ω):

H1
0 (Ω) := C∞

0 (Ω)
H1

.

In other words, H1
0 (Ω) is the closure of C∞

0 (Ω) with respect to the H1-norm topol-
ogy. We warn the reader that H1

0 (Ω) 6= H1(Ω). As we shall see, this space is useful
in applications. Functions in H1

0 (Ω) satisfy the following important inequality:

Theorem 1.6 (Poincaré). There exists C > 0 such that

(1.8) ‖v‖L2 ≤ C ‖∇v‖L2 ∀v ∈ H1
0 (Ω).

Note that (1.8) cannot hold for every function v ∈ H1(Ω). In fact, if v is a
constant, then ∇v = 0 and this would imply that v is identically zero.

To each element in H1(Ω) it is possible to associate a notion of trace (=
boundary value on ∂Ω), even though these functions are only defined a.e.:

Theorem 1.7 (Trace theorem). There exists a (unique) continuous linear operator Tr :
H1(Ω) → L2(∂Ω) such that

Tr (v) = v|∂Ω ∀v ∈ C∞(Ω).

Moreover,
ker Tr = H1

0 (Ω).
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In view of the theorem above, H1
0 (Ω) can be seen as the set of elements in

H1(Ω) which vanish on ∂Ω.
Below, the reader will find some properties satisfied by functions in H1(Ω)

which will be used in the sequel:

Exercise 1.7. Let Φ ∈ C1(R) be such that Φ′ is bounded in R. Prove the chain rule
for functions in H1:
If v ∈ H1(Ω), then Φ(v) ∈ H1(Ω) and

∇Φ(v) = Φ′(v)∇v a.e.

Hint: Apply Theorem 1.2.

Exercise 1.8. Show that if u ∈ H1(Ω), then u+ ∈ H1(Ω) and

∇u+ =

{
∇u if u ≥ 0,

0 if u < 0.

What is the analog for u−?
Hint: Apply Exercise 1.7 to a suitable sequence of smooth functions Φk : R → R such that
Φk(t)→ t+ uniformly in R and in C1 outside t = 0.

1.5. The weak formulation of (1.2). We now implement Step 1 described in Sec-
tion 1.3 above. We first replace (1.2) by the following minimization problem in
H1(Ω):

(1.9) Iw = inf
{∫

Ω

|∇v|2 : v ∈ f̄ + H1
0 (Ω)

}
,

where f̄ ∈ C∞(Ω) is a fixed function such that f̄ = f on ∂Ω.

Exercise 1.9. Check that (1.9) does not depend on the extension f̄ . In other words,
if f̃ is another extension of f , then

f̄ + H1
0 (Ω) = f̃ + H1

0 (Ω).

Theorem 1.8 (Hilbert). Problem (1.9) has a unique solution u ∈ H1(Ω). Moreover, u
satisfies

(1.10)
∫

Ω

∇u · ∇ϕ = 0 ∀ϕ ∈ C∞
0 (Ω).

We say that any function u satisfying (1.10) is a weak solution of the Laplace
equation ∆u = 0. Of course, if u is smooth and ∆u = 0 in Ω, then (1.10) holds. As
we will see in the next section, if u satisfies (1.10), then u ∈ C∞(Ω); thus, ∆u = 0
in Ω in the classical sense. In other words, the notions of weak and classical
solutions turn out to be the same. This is quite surprising!

Theorem 1.8 will be proved using Hilbert’s strategy:
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Proof of Theorem 1.8. Let (un) be a minimizing sequence. We first show that (un)
is bounded in H1(Ω). Since ∫

Ω

|∇un|2 → Iw,

we already know that (∇un) is bounded in L2(Ω). It remains to show that (un)
is bounded in L2(Ω). Note that un − f̄ belongs to H1

0 (Ω); thus, by Poincaré’s
inequality,

‖un − f̄‖L2 ≤ C ‖∇un −∇f̄‖L2 ≤ C ∀n ≥ 1.

We conclude that (un) is bounded in H1(Ω).
Applying Theorem 1.5, we can extract a subsequence (unk

) such that unk
⇀ u

weakly in H1(Ω). Moreover, by Theorem 1.5 (i),∫
Ω

|∇u|2 ≤ lim
k→∞

∫
Ω

|∇unk
|2 = Iw.

It remains to show that u ∈ f̄ + H1
0 (Ω). To see this, note that H1

0 (Ω) is a closed
vector subspace of H1

0 (Ω) and the sequence (un− f̄) is contained in H1
0 (Ω). Thus,

by Proposition 1.2, we deduce that

u− f̄ ∈ H1
0 (Ω).

We conclude that u is an admissible function of problem (1.9). In particular,

Iw ≤
∫

Ω

|∇u|2.

Therefore,

Iw =
∫

Ω

|∇u|2.

The proof of (1.10) will be left as an exercise (the reader can proceed as in Propo-
sition 1.1). �

1.6. Weyl’s lemma. We now turn ourselves to Step 2 of the modern approach.
More precisely, we want to prove that for any function u ∈ H1(Ω) satisfying∫

Ω

∇u · ∇ϕ = 0 ∀ϕ ∈ C∞
0 (Ω),

then u ∈ C2(Ω) and ∆u = 0 in Ω.
In 1940, Weyl showed that this is indeed the case. It is one of the first regu-

larity results in the context of the Calculus of Variations:

Theorem 1.9 (Weyl). Let u ∈ H1(Ω) be such that

(1.11)
∫

Ω

∇u · ∇ϕ = 0 ∀ϕ ∈ C∞
0 (Ω).

Then, u ∈ C∞(Ω) and ∆u = 0 in Ω.
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Proof. By the definition of weak derivative, (1.11) gives

(1.12)
∫

Ω

u∆ϕ = 0 ∀ϕ ∈ C∞
0 (Ω).

For simplicity, we shall now assume that Ω = RN .
Let ρ ∈ C∞

0 (B1) be a radial function such that ρ ≥ 0 and
∫

B1
ρ = 1. For any ε > 0,

let

ρε(x) =
1

εN
ρ
(x

ε

)
.

Given ϕ ∈ C∞
0 (RN ), we choose ρε ∗ ϕ as a test function in (1.12). By Fubini’s

theorem, we have∫
RN

(ρε ∗ u)∆ϕ =
∫

RN

u (ρε ∗∆ϕ) =
∫

RN

u∆(ρε ∗ ϕ) = 0.

On the other hand, integrating by parts twice, we get∫
RN

(ρε ∗ u)∆ϕ = −
∫

RN

∇(ρε ∗ u) · ∇ϕ =
∫

RN

∆(ρε ∗ u) ϕ

Thus, ∫
RN

∆(ρε ∗ u) ϕ = 0

for every test function ϕ ∈ C∞
0 (RN ). Since ρn ∗ u is smooth, we deduce that

∆(ρε ∗ u) = 0 in RN .

In other words, ρε ∗ u is a harmonic function. In particular, it satisfies the Mean
Value Formula:

ρε ∗ u(x) = −
∫

Br(x)

ρε ∗ u ∀x ∈ Rn, ∀r > 0.

Here, “−” denotes the average over Br(x), i.e., −
∫

Br
= 1

|Br|
∫

Br
. Since ρε ∗ u → u

in L1(RN ), we conclude that

(1.13) u(x) = −
∫

Br(x)

u for a.e. x ∈ Rn, for a.e. r > 0.

Note that for r > 0 fixed, the right-hand side is a continuous function of x (apply
the Lebesgue Dominated Convergence Theorem). Thus, u coincides a.e. with a
continuous function. Replacing u by this continuous representative if necessary,
we may assume that u itself is continuous. In particular, identity (1.13) holds for
every x ∈ RN and r > 0.
Multiply both sides of (1.13) by rN and differentiate with respect to r. We deduce
that

(1.14) u(x) = −
∫

∂Br(x)

u ∀x ∈ Rn, ∀r > 0.
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(The average in this case is computed over ∂Br.) In order to conclude the proof
of Theorem 1.9, we show that

(1.15) ρ ∗ u(x) = u(x) ∀x ∈ RN .

For simplicity, let us prove this equality for x = 0. Since ρ is radial, we have

ρ ∗ u(0) =
∫

RN

ρ(y)u(y) dy =
∫ ∞

0

ρ(r) dr

∫
∂Br(0)

u(r, σ) dσ.

Applying (1.14), we then get

ρ ∗ u(0) =
∫ ∞

0

ρ(r) |∂Br|u(0) dr =
(∫

RN

ρ

)
u(0) = u(0).

Thus, (1.15) holds. Since ρ∗u is smooth, we conclude that u is smooth as well. �

Remark 1.1. Theorem 1.9 shows that the solution u we got in Theorem 1.8 via min-
imization in H1

0 (Ω) actually belongs to C∞(Ω). This takes care of the regularity
in the interior of our domain Ω. It remains to show that u is smooth up to the
boundary; in other words, u ∈ C∞(Ω). This is more difficult to prove and it will
not be done here (see [4]).

2. THE POISSON EQUATION

Let Ω ⊂ RN be such that Ω has electric density g(x) at each point x ∈ Ω.
Assume that ∂Ω is connected to the earth (its electric potential is thus identically
zero). Consider the following

Question. What is the electric potential inside Ω generated by g?

Mathematically, given g ∈ C∞(Ω), we wish to solve

(2.1)
{−∆u = g in Ω,

u = 0 on ∂Ω.

Note that (2.1) is the Euler-Lagrange equation associated to the functional

J(v) =
1
2

∫
Ω

|∇v|2 −
∫

Ω

gv.

Instead of repeating the same strategy as before, we can reduce (2.1) to a
problem of the form (1.1).

2.1. The Newtonian potential. Taking an extension of g to RN if necessary, we
may always assume that g ∈ C∞

0 (RN ). The Newtonian potential of g is defined
as

G(x) =
∫

RN

Φ(x− y)g(y) dy ∀x ∈ RN ,

where Φ is the fundamental solution of −∆:

Φ(z) =
1

N(N − 2)|B1|
1

|z|N−2
;
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here, |B1| denotes the volume of the unit ball in RN . Note that Φ is smooth outside
the origin and ∆Φ = 0 in RN \{0}. The constant factor in front of 1

|z|N−2 is chosen
so that

−∆Φ = δ0

in the sense of distributions, i.e., (see [3])

(2.2) −
∫

RN

Φ∆ϕ = ϕ(0) ∀ϕ ∈ C∞
0 (RN ).

We now establish the following

Proposition 2.1. Let g ∈ C∞
0 (RN ). Then, G ∈ C∞(RN ) and

(2.3) −∆G = g in RN .

Proof. Changing variables, we get

G(x) =
∫

RN

g(x− y)Φ(y) dy.

Since g ∈ C∞
0 (RN ), we conclude that G ∈ C∞(RN ).

We now prove (2.3). For every ϕ ∈ C∞
0 (RN ), we have∫

RN

∆G ϕ =
∫

RN

G∆ϕ.

On the other hand, by Fubini’s theorem and (2.2),∫
RN

G∆ϕ =
∫

RN

∆ϕ(x) dx

∫
RN

Φ(x− y)g(y) dy

=
∫

RN

g(y) dy

∫
RN

Φ(x− y)∆ϕ(x) dx

=
∫

RN

g(y) dy

∫
RN

Φ(z)∆ϕ(z + y) dz = −
∫

RN

g(y)ϕ(y) dy.

Thus,

−
∫

RN

∆G ϕ =
∫

RN

gϕ.

Since this holds for every ϕ ∈ C∞
0 (RN ), we conclude that

−∆G = g in RN .

�

2.2. Solving (2.1). We now prove the following

Theorem 2.1. Equation (2.1) has a solution for every g ∈ C∞(Ω).

Proof. Let G be the Newtonian potential of a C∞
0 -extension of g in RN . Set U =

u−G. Then, equation (2.1), in terms of U , becomes{−∆U = 0 in Ω,

U = −G on ∂Ω.
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In Section 1 we saw that this equation has a solution. We conclude that (2.1) also
has a solution. �

3. THE EIGENVALUE PROBLEM

We wish to find u 6= 0 satisfying

(3.1)
{−∆u = λu in Ω,

u = 0 on ∂Ω,

for some λ ∈ R. In other words, u is an eigenfunction of −∆ with eigenvalue λ.
The strategy to obtain the existence of such u and λ will be to consider the

following minimization problem under constraint:

(3.2) λ1 = inf
{∫

Ω

|∇v|2 : v ∈ H1
0 (Ω) and

∫
Ω

v2 = 1
}

.

In particular, λ1 satisfies

(3.3) λ1

∫
Ω

v2 ≤
∫

Ω

|∇v|2 ∀v ∈ H1
0 (Ω).

Note that, by definition, 1
λ1

is the smallest constant for which Poincaré’s inequal-
ity holds.

We summarize the main properties satisfied by λ1 in the next

Theorem 3.1.
(i) λ1 is the smallest eigenvalue of (3.1);

(ii) λ1 > 0 and λ1 is simple;
(iii) If u is an eigenfunction of (3.1) associated to λ1, then u ∈ C∞(Ω) and u does

not change sign.

The proof of Theorem 3.1 is presented below.

3.1. Existence step. The proof of existence of a minimizer of (3.2) is similar to the
Dirichlet Principle:

Theorem 3.2. The minimization problem (3.2) has a solution.

Proof. Let (un) be a minimizing sequence. By Corollary 1.1, one can find a subse-
quence (unk

) such that

unk
⇀ u weakly in H1

0 (Ω)

unk
→ u in L2(Ω).

Thus, ∫
Ω

u2 = 1

and, by Theorem 1.5 (i),∫
Ω

|∇u|2 ≤ lim
k→∞

∫
Ω

|∇unk
|2 = λ1.
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Since H1
0 (Ω) is a closed vector subspace of H1(Ω), we have u ∈ H1

0 (Ω). Thus, u is
a minimizer of (3.2). �

We now show that u is a weak solution of (3.1):

Proposition 3.1. If u is a solution of (3.2), then u satisfies

(3.4)
∫

Ω

∇u · ∇v = λ1

∫
Ω

uv ∀v ∈ H1
0 (Ω).

Proof. Let Φ,Ψ : H1
0 (Ω) → R be given by

Φ(v) =
∫

Ω

|∇v|2 and Ψ(v) =
∫

Ω

v2.

By assumption, u is a critical point of Φ restricted to the set [Ψ = 1]. By the
Lagrange Multiplier Rule, there exists µ ∈ R such that

Φ′(u) = µΨ′(u).

Note that

Φ′(v)w = 2
∫

Ω

∇v · ∇w and Ψ′(v)w = 2
∫

Ω

vw ∀v, w ∈ H1
0 (Ω).

Taking in particular w = v = u, we deduce that µ = λ1. This establishes the
proposition. �

The next lemma will be important in the proof of parts (ii) and (iii) of The-
orem 3.1:

Lemma 3.1. If u is a solution of (3.2), then u+ and u− also satisfy (3.4).

Proof. Let

a =
∫

Ω

(u+)2 and b =
∫

Ω

(u−)2.

If a = 0 or b = 0, then we are done. We may thus assume that a, b > 0. Note that

a + b =
∫

Ω

u2 = 1.

Moreover, in view of (3.3) and Exercise 1.8,

λ1 =
∫

Ω

|∇u|2 =
∫

Ω

|∇u+|2 +
∫

Ω

|∇u−|2 ≥ λ1(a + b) = λ1.

We must have equality everywhere; in particular,∫
Ω

|∇u+|2 = λ1

∫
Ω

(u+)2 and
∫

Ω

|∇u−|2 = λ1

∫
Ω

(u−)2.

Therefore, u+

a1/2 and u−

b1/2 are also solutions of the minimization problem (3.2). In
view of the previous proposition, they must satisfy (3.4). Simplifying the result-
ing equations, we get the result. �
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3.2. Regularity step. As we have seen above, problem (3.1) has weak solutions.
Our goal in this section is to establish the next

Theorem 3.3. Let u ∈ H1
0 (Ω) be a weak solution of (3.1). Then, u ∈ C∞(Ω).

The strategy to prove Theorem 3.3 is to proceed inductively as follows:

(1) We first show that if u ∈ Hk, then u ∈ Hk+2;
(2) If u ∈ Hk for some k ≥ 1 sufficiently large, then u is continuous.

We say that v ∈ H2(Ω) if v,Dv ∈ H1(Ω). By induction, given any k ≥ 2, we say
that v ∈ Hk+1(Ω) if v,Dv ∈ Hk(Ω).

The basic ingredient to prove (1) is given by the next (see [3])

Theorem 3.4. Let u ∈ H1
loc(Ω) and f ∈ L2

loc(Ω) be such that

(3.5) −∆u = f in Ω.

Then, u ∈ H2
loc(Ω).

Whenever we say that u ∈ H1
loc(Ω) verifies (3.5), it is implicitly understood

in the weak sense; in other words,∫
Ω

∇u · ∇ϕ =
∫

Ω

fϕ ∀ϕ ∈ C∞
0 (Ω).

Assertion (2) is provided by the following (see [3])

Theorem 3.5 (Morrey). If u ∈ Hk(Ω) for some k > N
2 , then u is continuous. Moreover,

‖u‖C0 ≤ C‖u‖Hk ,

where the constant C > 0 is independent of u.

We can now prove Theorem 3.3:

Proof of Theorem 3.3. Let us first show that u ∈ Hk
loc(Ω), ∀k ≥ 2. For k = 2,

this follows directly from Theorem 3.4. Assume by induction the assertion is
true for some k ≥ 2. Given a multi-index (j1, . . . , jk−1), we will prove that
w = Dj1,...,jk−1u ∈ H2

loc(Ω). Indeed, note that by linearity w also satisfies the
equation

∆w = λw in Ω.

By assumption, w ∈ H1
loc(Ω). It then follows from Theorem 3.4 that w ∈ H2

loc(Ω).
Since this is true for every multi-index (j1, . . . , jk−1), we have u ∈ Hk+1

loc (Ω). By
induction, we get the result.
Thus, by Theorem 3.5, u and Dju are continuous in Ω for every j ≥ 1. We deduce
that u ∈ C∞(Ω). We refer the reader to [3] for the proof that u ∈ C∞(Ω). �
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3.3. Proof of Theorem 3.1. By Theorems 3.2 and 3.3, (3.2) has a minimizer u ∈
C∞(Ω). In addition, λ1 is an eigenvalue of −∆ and

λ1 =
∫

Ω

|∇u|2 ≥ 0.

Note that λ1 > 0, for otherwise u would be a constant; since u = 0 on ∂Ω, then
we would have u = 0 in Ω. Moreover, if λ is another eigenvalue of (3.1) with
eigenfunction v, then

λ

∫
Ω

v2 = −
∫

Ω

v∆v =
∫

Ω

|∇v|2 ≥ λ1

∫
Ω

v2.

Therefore, λ ≥ λ1.
We next prove the following

Claim. If u is any eigenfunction associated to λ1, then u does not vanish in Ω.

Assume by contradiction that u(x0) = 0 for some x0 ∈ Ω. In particular,
u+(x0) = 0. By Lemma 3.1, u+ also satisfies (3.4). Thus, u+ is also smooth and

−∆u+ = λ1u
+ ≥ 0 in Ω.

Since u+ vanishes in Ω, it follows from the strong maximum principle that u+ = 0
in Ω. Similarly, u− = 0 in Ω. We conclude that u = 0 in Ω, which is a contradiction,
since u is a non-trivial solution of (3.1).

This claim immediately implies assertion (iii). We are left to show that λ1 is
simple. Assume ũ is any eigenfunction associated to λ1. Let c ∈ R be such that

(3.6)
∫

Ω

(ũ− cu) = 0.

Since ũ − cu is also an eigenfunction associated to λ1, it follows from the claim
above that ũ− cu does not change sign. In view of (3.6), we conclude that ũ = cu.
Thus, λ1 is a simple eigenvalue. �

4. SEMILINEAR ELLIPTIC EQUATIONS

We consider the Dirichlet problem

(4.1)
{−∆u = h(u) in Ω,

u = 0 on Ω,

where h : R → R is smooth. We say that u is a classical solution of (4.1) if u ∈
C2(Ω) verifies (4.1) in the usual sense; u is a weak solution of (4.1) if u ∈ H1

0 (Ω),
h(u) ∈ L1(Ω) and

(4.2)
∫

Ω

∇u · ∇ϕ =
∫

Ω

h(u)ϕ ∀ϕ ∈ C∞
0 (Ω).
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In this section, we devote ourselves to the case where h(s) = λs + (s+)q,
with λ ∈ R and q > 1. We shall look for non-trivial solutions of the equation

(4.3)


−∆u = λu + uq in Ω,

u ≥ 0 in Ω,

u = 0 on Ω.

The main result is the following

Theorem 4.1. Assume 1 < q < N+2
N−2 . Then, (4.3) has a non-trivial solution u ∈ C2(Ω)

if and only if λ < λ1.

4.1. Existence step. Two main difficulties arise in this case
(i) u = 0 is a solution of (4.3), thus one has to make sure to avoid it;

(ii) The functional associated to (4.3), namely

J(v) =
1
2

∫
Ω

(
|∇v|2 − λv2

)
− 1

q + 1

∫
Ω

(v+)q+1

is not bounded from below in H1
0 (Ω).

Exercise 4.1. Let v ∈ H1
0 (Ω) with v+ 6= 0. Show that

lim
t→∞

J(tv) = −∞.

One possible approach to study (4.3) is to look for solutions using the Moun-
tain Pass Theorem of Ambrosetti-Rabinowitz (see [7]), but we shall not pursue
this direction. Instead, we consider the following minimization problem with
constraint:

(4.4) Iλ = inf
{∫

Ω

(
|∇v|2 − λv2

)
: v ∈ H1

0 (Ω) and
∫

Ω

(v+)q+1 = 1
}

.

We have the following

Theorem 4.2. If 1 < q < N+2
N−2 and λ < λ1, then Iλ > 0 and (4.4) has a solution

u ∈ H1
0 (Ω). Moreover, u ≥ 0 a.e. and satisfies

(4.5)
∫

Ω

∇u · ∇ϕ− λ

∫
Ω

uϕ = Iλ

∫
Ω

uqϕ ∀ϕ ∈ C∞
0 (Ω).

Proof. Since λ < λ1, we have Iλ ≥ 0 (apply inequality (3.3)). In particular, Iλ >
−∞. The proof of the existence of a minimizer u, and that u satisfies

(4.6)
∫

Ω

∇u · ∇ϕ− λ

∫
Ω

uϕ = Iλ

∫
Ω

(u+)qϕ ∀ϕ ∈ C∞
0 (Ω)

then follows along the same lines of Theorem 3.2 and Proposition 3.1. We leave
the details to the reader.
Let us prove that Iλ > 0. Assume by contradiction that Iλ = 0. Then, u satisfies∫

Ω

∇u · ∇ϕ = λ

∫
Ω

uϕ ∀ϕ ∈ C∞
0 (Ω).
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Since u 6= 0, we deduce that λ < λ1 is an eigenvalue of −∆. But this contradicts
the fact that λ1 is the smallest eigenvalue (see Theorem 3.1). Thus, Iλ > 0.
Finally, we prove that u ≥ 0 a.e. In order to do that, we first note that (4.6) still
holds for functions ϕ ∈ H1

0 (Ω) (it suffices to apply a density argument). We then
apply (4.6) with ϕ = u−. A simple computation shows that

uu− = −(u−)2 and (u+)qu− = 0.

Moreover, by Exercise 1.8, we have

∇u · ∇u− = −|∇u−|2.

It then follows from (3.3) and (4.6) that

0 =
∫

Ω

|∇u−|2 − λ

∫
Ω

(u−)2 ≥ (λ1 − λ)
∫

Ω

(u−)2.

Since λ < λ1, we conclude that u− = 0 a.e. Hence, u ≥ 0 a.e. �

Exercise 4.2. The goal of this exercise is to study the minimization problem (4.4)
when λ ≥ λ1. Show that

(i) If λ > λ1, then Iλ = −∞.
(ii) If λ = λ1, then Iλ = 0 and the minimum is attained by u = tζ1, where ζ1

is an eigenfunction of −∆ corresponding to λ1 and t = 1
‖ζ1‖Lq+1

.

4.2. Regularity step. We must keep in mind that our goal is to find classical so-
lutions of (4.1). We now show that any weak solution of (4.1) is classical:

Theorem 4.3. Let 1 < q < N+2
N−2 . If u is a weak solution of (4.1), then u ∈ C2(Ω).

Before proving Theorem 4.3, let us describe two ways of improving the reg-
ularity of weak solutions of

(4.7) −∆u = g in Ω.

Firstly, there are C2,α-estimates, also known in the literature as Schauder
estimates:

Theorem 4.4 (Schauder). Let u ∈ H1
0 (Ω) and g ∈ L1(Ω) satisfying (4.7). If f ∈

Cα(Ω) for some 0 < α < 1, then u ∈ C2,α(Ω).

Here, we denote by Cα(Ω) the space of Hölder-continuous functions with expo-
nent α; C2,α(Ω) is the subspace of C2-functions u such that D2u ∈ Cα(Ω).

Another way to improve the regularity of solutions of (4.7) is to apply W 2,p-
regularity estimates due to Calderón-Zygmund:

Theorem 4.5 (Calderón-Zygmund). Let u ∈ H1
0 (Ω) and g ∈ L1(Ω) satisfying (4.7).

If g ∈ Lp(Ω) for some 1 < p < ∞, then u ∈ W 2,p(Ω).
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We say that u ∈ W 2,p(Ω) if u and its weak derivatives Du, D2u belong to Lp(Ω).

In order to establish Theorem 4.3 we need to suitably combine Theorems 4.4
and 4.5 using a “bootstrap argument”. Note that in our case we know that g =
λu + uq. The idea is to start with Theorem 4.5 and to show that u is Hölder
continuous, then this will imply that g is also Hölder continuous. By Theorem 4.4
we will conclude that u is a classical solution of (4.3).

In order to implement this, we will need the following two important re-
sults. The first is the counterpart of Theorem 1.3 for W 2,p-spaces:

Theorem 4.6 (Sobolev). If 1 < p < N
2 , then W 2,p(Ω) ⊂ L

pN
N−2p (Ω) and we have

‖v‖
L

pN
N−2p

≤ C‖v‖W 2,p ∀v ∈ W 2,p(Ω),

for some constant C > 0 independent of v.

The second is the analog of Theorem 3.5:

Theorem 4.7 (Morrey). If u ∈ W 2,p(Ω) for some p > N
2 , then u ∈ Cα(Ω), with

α = min
{
2− N

p , 1
}

. Moreover,

‖u‖Cα ≤ C‖u‖W 2,p ,

where the constant C > 0 is independent of u.

We now present the

Proof of Theorem 4.3. We first show that u ∈ W 2,p(Ω) for every 1 < p < ∞. Recall
that

u ∈ H1
0 (Ω) =⇒ u ∈ Lt1 ,

where t1 := 2N
N−2 , by the Sobolev imbedding. Thus, g := λu + uq ∈ Lr1(Ω), where

r1 := t1
q . Since q < t1, we can apply Theorem 4.5 to conclude that u ∈ W 2,r1(Ω).

By Theorem 4.6,
u ∈ W 2,r1(Ω) =⇒ u ∈ Lt2(Ω),

where t2 := r1N
N−2r1

. It is important to realize that we have improved the inte-
grability of u since t2 > t1. Repeating this process, one construct an increasing
sequence (tk) so that, from one step to the next one,

u ∈ Ltk(Ω) =⇒ u ∈ Ltk+1(Ω).

Moreover, it is easy to see that tk → ∞. Thus, u ∈ Lt(Ω) for every t < ∞.
This immediately implies that g also belong to Lr(Ω) for every r < ∞. Applying
once again Theorem 4.5 we conclude that u ∈ W 2,p(Ω), for every 1 < p < ∞, as
claimed.
We can now apply Theorem 4.7 to deduce that u is Hölder continuous for every
0 < α < 1. Thus, g is also Hölder continuous. Finally, applying Theorem 4.4 we
deduce in particular that u ∈ C2(Ω). �
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4.3. Proof of Theorem 4.1. (⇒). Assume (4.3) has a nontrivial solution u. Let ζ1

be an eigenfunction of−∆ associated to λ1. By Theorem 3.1, we may assume that
ζ1 > 0 in Ω. Multiplying the equation in (4.3) by ζ1 and integrating by parts we
have ∫

Ω

∇u · ∇ζ1 = λ

∫
Ω

uζ1 +
∫

Ω

uqζ1.

On the other hand, ζ1 satisfies∫
Ω

∇ζ1 · ∇u = λ1

∫
Ω

ζ1u.

Therefore,

(λ1 − λ)
∫

Ω

uζ1 =
∫

Ω

uqζ1 > 0.

This implies that λ < λ1 as we wanted to prove.

(⇐). By Theorem 4.2, equation (4.5) has a nontrivial solution u ≥ 0 a.e. Note
that (4.5) is not the weak form of (4.3) unless Iλ = 1, which need not be the case.
However, since Iλ > 0, we can renormalize u to obtain a nontrivial weak solution
of (4.3). In fact, the function U := αu, where α = (Iλ)

1
q−1 , does the job. Applying

Theorem 4.3, we have U ∈ C2(Ω). Finally, since λ < λ1, it follows from the
Maximum Principle that U > 0 in Ω. The proof of Theorem 4.1 is complete. �
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